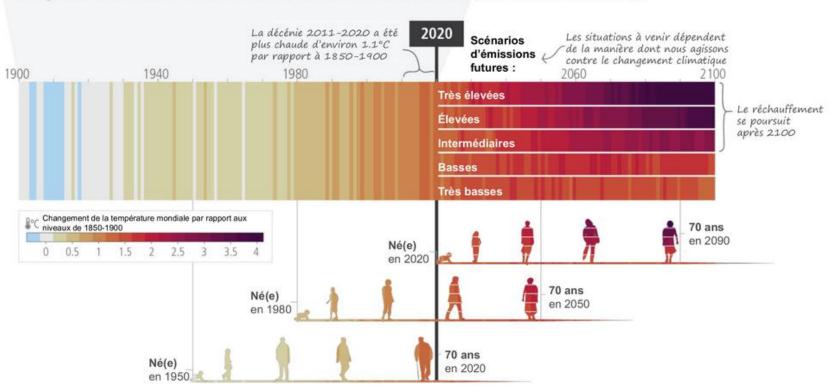


Réduction de l'empreinte environnementale des activités scientifiques spatiales françaises

Héloïse Méheut, Bruno Millet

Simon Baillarin, Etienne Berthier, Cédric Lothoré, Aurélie Marchaudon, Pierre Omaly, Thierry Pellarin, Françoise Perrel, Alexandre Santerne, Aymeric Spiga



État des lieux

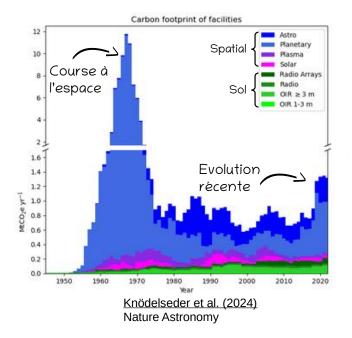
c) Ce sont les décisions d'aujourd'hui et à court-terme qui définissent à quel point les générations actuelles et futures vivront dans un monde plus chaud et différent

Source IPCC 6th synthesis report Traduction: Sydney Thomas pour @BonPote

IPCC AR6 Synthetic report

Quelques spécificités

Des questions environnementales


- Problématiques fortement imbriquées et nouvelles
 - → Risque de désinvestissement, redirection des responsabilités, peurs

Du spatial

- Impacts environnementaux sur Terre et au-delà
- Domine l'empreinte carbone des disciplines concernées

De la communauté académique

- Connaissance, visibilité, et reconnaissance
 - > Responsabilité
- Faire-valoir de l'industrie spatiale : question éthique
- Auto-détermination, nécessité d'action
- Fondements : liberté académique, qualité, ...

"La prise en compte des impacts environnementaux de la recherche doit être considérée comme relevant de l'éthique de la recherche" COMETS

Sondage

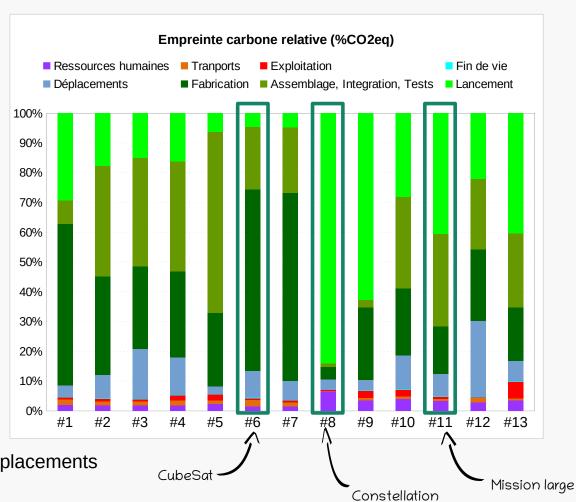
88% de la communauté académique affirme

"L'urgence climatique exige des changements profonds dans la pratique de nos métiers"

(+6000 réponses)

Labos 1point5, 2020

"Être exemplaire dans l'application des objectifs de la planification écologique de l'État" Engagement de 16 organismes de recherche, dont le CNES

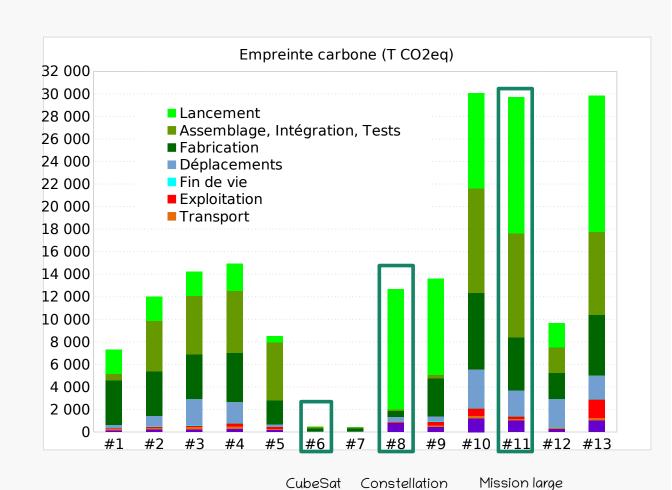


Empreinte carbone

Typologie de projets

Typologic de projets							
#	Туре	Coopéra.	Gabar.	Lance.	Durée dével.	Durée exploi.	C o û t
1	LEO	France	1 000 kg	S. Am.	10 ans	10 ans	М
2	LEO	Europe	1 000 kg	S. Am.	12 ans	10 ans	М
3	LEO	Asia	1 000 kg	Asia	14 ans	10 ans	М
4	LEO	N. America	2 000 kg	N. Am.	15 ans	5 ans	М
5	LEO	Europe	200 kg	S. Am.	14 ans	5 ans	S
6	LEO	France	10 kg	S. Am.	4 ans	2 ans	S
7	LEO	France	10 kg	Kaz.	4 ans	2 ans	S
8	LEO	France	50 × 30 kg	Japan	6 ans	8 ans	М
9	LEO	France	12 × 300 kg	S. Am.	6 ans	10 ans	М
10	L2	World	4 000 kg	N. Am.	25 ans	15 ans	L
11	L2	Europe	4 × 1 500 kg	S. Am.	25 ans	15 ans	L
12	Rover	N. America	400 kg	N. Am.	10 ans	4 ans	М
13	Orbiter	Europe	5 300 kg	S. Am.	20 ans 6 ans		L

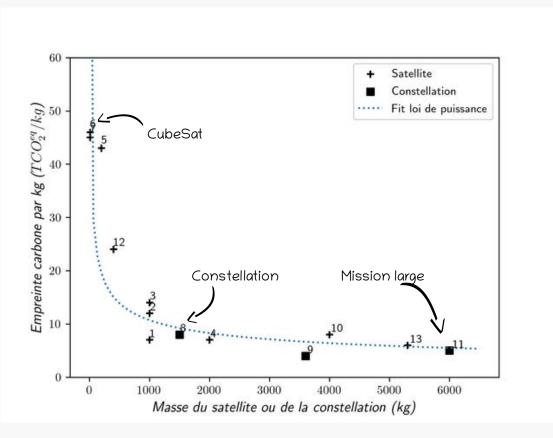
- 3 postes majeurs (Fabrication, AIT, Lancement) et déplacements
- Pas de mission type : cf poids relatif du lancement



Empreinte carbone

Typologie de projets

#	Туре	Coopéra.	Gabar.	Lance.	Durée dével.	Durée exploi.	C o û t
1	LEO	France	1 000 kg	S. Am.	10 ans	10 ans	М
2	LEO	Europe	1 000 kg	S. Am.	12 ans	10 ans	М
3	LEO	Asia	1 000 kg	Asia	14 ans	10 ans	М
4	LEO	N. America	2 000 kg	N. Am.	15 ans	5 ans	М
5	LEO	Europe	200 kg	S. Am.	14 ans	5 ans	S
6	LEO	France	10 kg	S. Am.	4 ans	2 ans	S
7	LEO	France	10 kg	Kaz.	4 ans	2 ans	S
8	LEO	France	50 × 30 kg	Japan	6 ans	8 ans	М
9	LEO	France	12 × 300 kg	S. Am.	6 ans	10 ans	М
10	L2	World	4 000 kg	N. Am.	25 ans	15 ans	L
11	L2	Europe	4 × 1 500 kg	S. Am.	25 ans	15 ans	L
12	Rover	N. America	400 kg	N. Am.	10 ans	4 ans	М
13	Orbiter	Europe	5 300 kg	S. Am.	20 ans	6 ans	L



Empreinte carbone

Typologie de projets

#	Туре	Coopéra.	Gabar.	Lance.	Durée dével.	Durée exploi.	C o û t
1	LEO	France	1 000 kg	S. Am.	10 ans	10 ans	М
2	LEO	Europe	1 000 kg	S. Am.	12 ans	10 ans	М
3	LEO	Asia	1 000 kg	Asia	14 ans	10 ans	М
4	LEO	N. America	2 000 kg	N. Am.	15 ans	5 ans	М
5	LEO	Europe	200 kg	S. Am.	14 ans	5 ans	S
6	LEO	France	10 kg	S. Am.	4 ans	2 ans	S
7	LEO	France	10 kg	Kaz.	4 ans	2 ans	S
8	LEO	France	50 × 30 kg	Japan	6 ans	8 ans	М
9	LEO	France	12 × 300 kg	S. Am.	6 ans	10 ans	М
10	L2	World	4 000 kg	N. Am.	25 ans	15 ans	L
11	L2	Europe	4 × 1 500 kg	S. Am.	25 ans	15 ans	L
12	Rover	N. America	400 kg	N. Am.	10 ans	4 ans	М
13	Orbiter	Europe	5 300 kg	S. Am.	. 20 ans 6 ans		L

- Une empreinte carbone au kg fortement décroissante avec la masse totale
- Risque d'effet rebond

Recommandations

- Quantifier annuellement les émissions de GES de l'ensemble du spatial scientifique français
- Fixer et honorer une trajectoire de réduction globale de ces émissions
 - objectif de -7% par an (30% entre 2025 et 2030, facteur 6 horizon 2050 référence 1990)
 - budgets carbone pour les émissions émanant de l'ensemble des parties prenantes
 - définir et sélectionner les missions, orienter la R&D, dans les limites de cette trajectoire
- Sensibiliser et former l'ensemble des parties prenantes à la transition environnementale
- **Optimiser** l'existant
 - durée d'exploitation des missions
 - utilisation des données scientifiques
 - mutualiser et limiter les infrastructures sol
 - réemploi, recyclage et écoconception
- Privilégier la coopération, partager les données et réduire la compétition

Exemples d'action :	Équipes/Laboratoires	Tutelles	Financeurs	Décideurs de nouveaux programmes	Acteurs internationaux	Général/ Transverse
Quantifier et suivre les émissions de GES au niveau :	APR	Infra. Sol (incl. Salles blanches)	R&T	Projets spatiaux		
Fixer une trajectoire de réduction (objectif -7 %/an)	p.ex. en CL	p. ex en CA/ convention	p.ex en CS, CIO	p.ex. en CPS	Communiquer sur cette trajectoire	Impliquer toute la communauté
Honorer cette trajectoire	Choix des sujets de recherche	Audit & sélection des infra. sol	Exigences env. (achats, soustraitance,)	GES paramètre de sélection des missions	Diplomatie environ- nementale	Réduction des vols en avion
Sensibiliser & Former	Eco-conception		Accompagner l'industrie		Place de leader	Toutes les parties prenantes
Optimiser: - Mutualisation - Réemploi - Eco-conception	Recyclage Moins de déplacements en avion Low-tech Chartre Evènements eco-responsables	Mutualiser les resssources énergivores Rationaliser les nouveaux moyens	Eco-conception (R&T) Exploitation données d'archives	Durée des missions Sur- spécifications/ besoins Ballons		
Coopérer	Partage des données et les codes		Limiter la concurrence	Encourager la coopération (vs concurrence)	S'interdire les redondances	

Implique l'adaptation de l'ensemble des processus/du fonctionnement de chacune des entités concernées

Recommandation : Placer les questions environnementales au cœur de la politique spatiale scientifique et anticiper le besoin de résilience

Scénarios GIEC/ADEME

- Génération frugale
- Coopération territoriale
- Technologies vertes
- Pari réparateur

Credits: ADEME

Projection

- Spatial scientifique en 2050
- Choix effectués aujourd'hui

Une stratégie pour le spatial scientifique

- Garder confiance en l'avenir :
 - Trajectoire bas carbone à se fixer et s'y tenir Appel à Projets de Recherche Projets spatiaux Laboratoires
- Assumer ses responsabilités vis à vis de la société :
 - Formation, information & transparence
 - · Représentativité, « convention »
- Endosser sa place de pionnier dans la filière :
 - Communauté scientifique
 - Politique d'efficacité et de sobriété
 - Identifier les entraves à la transition : sciences humaines et sociales

Conclusion

- Une volonté en commun : pérenniser les activités spatiales scientifiques
 - Assurer un accès à l'espace aux générations futures
 - Dans une société bas carbone
- Définir une trajectoire de décarbonation
 - Un défi ambitieux
 - A la hauteur des capacités du spatial
 - Stimulant l'innovation
- Responsabilité et crédibilité de la communauté scientifique
 - Fondements et cadre académiques
- Résilience

Saint Malo et sa fine couche atmosphérique Credits: ESA/ NASA


Une opportunité majeure pour le spatial français

Questions?

Températures à Saint Malo (Moyennes annuelles) - Credits: InfoClimat